Measuring the error of dynamic hedging: a Laplace transform approach
نویسندگان
چکیده
Using the Laplace transform approach, we compute the expected value and the variance of the error of a hedging strategy for a contingent claim when trading in discrete time. The method applies to a fairly general class of models, including Black-Scholes, Merton’s jump-diffusion and Normal Inverse Gaussian, and to several interesting strategies, as the Black-Scholes delta, the Wilmott’s improveddelta and the local optimal one. With this approach, also transaction costs may be treated. The results obtained are not asymptotical approximations but exact and efficient formulas, valid for any number of trading dates. They can also be employed under model mispecification, to measure the influence of model risk on a hedging strategy.
منابع مشابه
The Effects of the Moving Load and the Attached Mass-Spring-Damper System Interactions on the Dynamic Responses of the Composite Plates: An Analytical Approach
In the current study, the effects of interactions of the moving loads and the attached mass-spring-damper systems of the composite plates on the resulting dynamic responses are investigated comprehensively, for the first time, using the classical plate theory. The solution of the coupled governing system of equations is accomplished through tracing the spatial variations using a Navier-type sol...
متن کاملFundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity
Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...
متن کاملDynamic responses of poroelastic beams with attached mass-spring systems and time-dependent, non-ideal supports subjected to moving loads: An analytical approach
The present study is the first to analyze the dynamic response of a poroelastic beam subjected to a moving force. Moreover, the influences of attached mass-spring systems and non-ideal supports (with local movements in the supporting points or base due to the presence of factors such as gaps, unbalanced masses, and friction or seismic excitations) on the responses were investigated. Non-ideal s...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007